This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Three new Diels-Alder type adducts from the stem bark of Morus cathayana

Qing-Jian Zhang ${ }^{\text {ab }}$; Gang Nia; Ying-Hong Wang ${ }^{\text {a }}$; Ruo-Yun Chen ${ }^{\text {a }}$; De-Quan Yu ${ }^{\text {a }}$
${ }^{\text {a }}$ The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Peking Union Medical College, Ministry of Education; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

To cite this Article Zhang, Qing-Jian, Ni, Gang, Wang, Ying-Hong, Chen, Ruo-Yun and Yu, De-Quan(2009) 'Three new Diels-Alder type adducts from the stem bark of Morus cathayana', Journal of Asian Natural Products Research, 11: 3, 267 - 273

To link to this Article: DOI: 10.1080/10286020902767690
URL: http://dx.doi.org/10.1080/10286020902767690

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Three new Diels-Alder type adducts from the stem bark of Morus cathayana

Qing-Jian Zhang, Gang Ni, Ying-Hong Wang, Ruo-Yun Chen and De-Quan Yu*
The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Peking Union Medical College, Ministry of Education; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

(Received 2 December 2008; final version received 4 January 2009)

Abstract

Three new Diels-Alder type adducts cathayanons C (1), D (2), and E (3), together with one known compound sanggenon C (4), were isolated from the stem bark of Morus cathayana. Their structures were fully elucidated by spectroscopic and chemical methods. Compound 2 showed good anti-oxidation activity with the inhibitory rate of malondialdehyde being 88% at a concentration of $10^{-6} \mathrm{~mol} / \mathrm{l}$.

Keywords: Morus cathayana; cathayanon C; cathayanon D; cathayanon E; anti-oxidation activity

1. Introduction

The mulberry trees had been important plants in agricultural and medical fields for thousands of years in China, because its leaves were an indispensable feed for silk worm, and its root barks were used to treat diabetes, arthritis, and rheumatism in Chinese herbal medicine. In 11 species of Morus found in China, the root bark of Morus alba was the classical medical materials, while the root bark of Morus cathayana was used as an important alternative in many places [1]. In our previous works, many novel compounds were isolated from Morus macroura, Morus mongolica, and Morus australis. In the continuous phytochemical investigation of M. cathayana, three new compounds of cathayanons $\mathrm{C}-\mathrm{E}(\mathbf{1}-\mathbf{3})$, together with a known compound sanggenon C (4), were isolated from its EtOH extract. This paper deals with the isolation and structure elucidation of these compounds, as well as the evaluation of their anti-oxidation effects.

2. Results and discussion

Cathayanon C (1) was obtained as a yellow amorphous powder. The molecular formula was established as $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{O}_{8}$ by HR-ESI-MS at $m / z 561.1548[\mathrm{M}+\mathrm{H}]^{+}$. The UV spectrum exhibited maxima at $208,220,284,310$, and 352 nm revealed the presence of a complicated chromophore. IR spectrum showed absorption bands at $3357.9,1693,1603$, and $1510 \mathrm{~cm}^{-1}$ assignable to hydroxy, $\mathrm{C}=\mathrm{C}$, and benzene ring moieties. ${ }^{1} \mathrm{H}$ NMR spectrum exhibited proton signals as follows: one set of ABX-type aromatic protons at $\delta_{\mathrm{H}} 7.42(1 \mathrm{H}$, d, $J=8.4 \mathrm{~Hz}, \mathrm{H}-6), 6.38(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, \mathrm{H}-5)$, and $6.43(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, $\mathrm{H}-3)$, a pair of trans-coupling olefinic protons at $\delta_{\mathrm{H}} 7.39(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\alpha)$ and 6.88 $(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\beta)$, as well as a singlet of two aromatic protons at $\delta_{\mathrm{H}} 6.80(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-2^{\prime}, 6^{\prime}$) assignable to a stilbene moiety; two sets of ABX-type aromatic protons at δ_{H} $6.11\left(1 \mathrm{H}, \mathrm{d}, ~ J=8.4 \mathrm{~Hz}, \mathrm{H}-14^{\prime \prime}\right), 5.91(1 \mathrm{H}$, dd, $\left.J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-13^{\prime \prime}\right), 6.29(1 \mathrm{H}, \mathrm{d}$,

[^0]Table 1. ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{1}$ and $\mathbf{2}$ (acetone- $d_{6}, 100 \mathrm{MHz}$).

No.	$\mathbf{1}$	$\mathbf{2}$	No.	$\mathbf{1}$	$\mathbf{2}$
1	116.9	117.0	$4^{\prime \prime}$	121.6	121.4
2	157.1	157.0	$5^{\prime \prime}$	129.6	117.3
3	103.6	103.4	$6^{\prime \prime}$	120.9	151.4
4	159.5	159.3	$7^{\prime \prime}$	22.2	17.6
5	108.6	108.4	$8^{\prime \prime}$	106.3	106.5
6	128.5	128.4	$9^{\prime \prime}$	115.4	114.9
α	125.7	125.1	$10^{\prime \prime}$	158.1	158.1
β	124.9	125.1	$11^{\prime \prime}$	104.8	104.6
1^{\prime}	141.1	139.8	$12^{\prime \prime}$	160.8	160.6
2^{\prime}	107.6	107.4	$13^{\prime \prime}$	106.3	106.2
3^{\prime}	152.9	152.0	$14^{\prime \prime}$	130.9	131.1
4^{\prime}	109.8	110.2	$15^{\prime \prime}$	115.1	115.1
5^{\prime}	156.6	155.7	$16^{\prime \prime}$	152.2	152.2
6^{\prime}	109.3	109.2	$17^{\prime \prime}$	105.2	105.2
$1^{\prime \prime}$	140.5	127.1	$18^{\prime \prime}$	159.9	158.6
$2^{\prime \prime}$	126.2	128.4	$19^{\prime \prime}$	111.5	110.6
$3^{\prime \prime}$	129.6	125.6	$20^{\prime \prime}$	125.3	130.5

$\left.J=2.4 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}\right), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\left.\mathrm{H}-20^{\prime \prime}\right), 6.57\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right)$, and $6.54\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-17^{\prime \prime}\right)$ ascribable to two 2,4-dioxysubstituted phenyl; one methyl singlet at $\delta_{\mathrm{H}} 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime \prime}\right)$, and two singlets at $\delta_{\mathrm{H}} 8.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right)$ and 7.59
$\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime \prime}\right)$ resembled to those of the aromatized methylcyclohexene ring of albanol B [2], which indicated that $\mathbf{1}$ was a DielsAlder type adduct with an aromatized methylcyclohexene ring.

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ showed 34 carbon signals that were equal to that of a Diels-Alder adduct of a prenyl stilbenoid and a chalcone moiety. The absence of carbonyl and most aliphatic carbon signals confirmed the presence of an aromatized methylcyclohexene ring compared with those carbon signals of albanol B [2]. Two olefinic carbon signals at $\delta_{\mathrm{C}} 125.7(\mathrm{C}-\alpha)$ and $124.9(\mathrm{C}-\beta)$, which correlated to two trans-coupling olefinic protons at $\delta_{\mathrm{H}} 7.39(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\alpha)$ and $6.88(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\beta)$ in HSQC spectrum, confirmed the presence of a stilbene moiety. In the HMBC spectrum, the longrange correlations of $\mathrm{H}-2^{\prime}, 6^{\prime}$ to $\mathrm{C}-4^{\prime}, \mathrm{H}-2^{\prime \prime}$ to $\mathrm{C}-4^{\prime}, 7^{\prime \prime}$ indicated that stilbene and aromatized methylcyclohexene moieties connected at C-4 ${ }^{\prime}$ and $\mathrm{C}-3^{\prime \prime}$. The carbon resonances (Table 1) were assigned using HSQC and HMBC experiments. Thus, the structure of $\mathbf{1}$ was determined as shown in Figure 1, which was

Figure 1. The structure of albanol B and $\mathbf{1}$, and the key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ of $\mathbf{1}$.
the first aromatized Diels-Alder adduct with a stilbene moiety. The absolute configuration of $\mathrm{C}-8^{\prime \prime}$ for $\mathbf{1}$ had not been determined based on current experiments.

Cathayanon D (2) was obtained as a yellow amorphous powder. The molecular formula was established as $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{O}_{9}$ by HR-ESI-MS at $m / z 577.1472[\mathrm{M}+\mathrm{H}]^{+}$. The UV spectrum exhibited maxima at $206,284,308$, and 352 nm , which were similar to those of $\mathbf{1}$. IR spectrum showed absorption bands at 3374 , 1693, 1611 , and $1509.6 \mathrm{~cm}^{-1}$ assignable to hydroxy, $\mathrm{C}=\mathrm{C}$, and benzene ring moieties.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 exhibited 14 aromatic proton signals and a methyl singlet as follows: one set of ABX-type aromatic protons at $\delta_{\mathrm{H}} 7.40(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6)$, $6.37(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-5)$, and 6.44 $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3)$, a pair of transcoupling olefinic protons at $\delta_{\mathrm{H}} 7.35(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \quad \mathrm{H}-\alpha)$ and $6.86(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \mathrm{H}-\beta$), as well as two singlets at $\delta_{\mathrm{H}} 6.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right)$ and $6.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime}\right)$ assignable to a stilbene moiety; one set of ABX-type aromatic protons at $\delta_{\mathrm{H}} 6.22(1 \mathrm{H}, \mathrm{d}$, $\left.J=8.4 \mathrm{~Hz}, \mathrm{H}-14^{\prime \prime}\right), 5.90(1 \mathrm{H}$, dd, $J=8.4$, $\left.2.4 \mathrm{~Hz}, \mathrm{H}-13^{\prime \prime}\right)$, and $6.27(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, $\mathrm{H}-11^{\prime \prime}$) ascribable to a 2,4-dihydroxyphenyl; another set of ABX-type aromatic protons at $\delta_{\mathrm{H}} 8.43\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-20^{\prime \prime}\right), 6.51(1 \mathrm{H}$, dd, $\left.J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right)$, and $6.53(1 \mathrm{H}$, $\mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-17^{\prime \prime}$) ascribable to a $2,4-$ dioxysubstituted phenyl moiety; two singlets at $\delta_{\mathrm{H}} 8.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right)$ and $2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime \prime}\right)$, together with the absence of the signal of $\mathrm{H}-6^{\prime \prime}$ compared with 1, indicated that $\mathrm{H}-6^{\prime \prime}$ was
substituted by a hydroxy group in $\mathbf{2}$, which were similar to those of mulberrofuran P [3].

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ showed 32 unsaturated and 2 saturated carbon signals like those of $\mathbf{1}$, and confirmed the presence of a stilbene moiety and an aromatized methylcyclohexene ring with an oxygenated aromatic carbon at $\delta_{\mathrm{C}} 151.4$ ($\mathrm{C}-6^{\prime \prime}$) compared with 1. In the HMBC spectrum, the longrange correlations of $\mathrm{H}-2^{\prime \prime}$ to $\mathrm{C}-4^{\prime}$ determined that two mentioned moieties connected at $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-3^{\prime \prime}$, and $\mathrm{H}-7^{\prime \prime}$ to $\mathrm{C}-6^{\prime \prime}$ confirmed that a hydroxyl connected to C- $6^{\prime \prime}$. Thus, the structure of 2 was elucidated as shown in Figure 2. Its absolute configuration at $\mathrm{C}-8^{\prime \prime}$ was not determined like compound 1.

Cathayanon E (3) was obtained as a yellow amorphous powder. The molecular formula was established as $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{O}_{12}$ by HR-ESI-MS at $m / z 707.2109[\mathrm{M}-\mathrm{H}]^{-}$. The UV spectrum exhibited maxima at 206, 282, and 306 nm , which were similar to those of sanggenon-type Diels-Alder adducts [4]. IR spectrum showed absorption bands at 3345 , 1697, and $1594 \mathrm{~cm}^{-1}$ assignable to hydroxyl, $\mathrm{C}=\mathrm{O}$, and benzene ring moieties.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$, which was tested at $24^{\circ} \mathrm{C}$, some protons showed such broad signals that the spectrum could not be analyzed satisfactorily. When tested at $80^{\circ} \mathrm{C}$ in DMSO- d_{6}, these protons displayed better signals as following: one singlet at $\delta_{\mathrm{H}} 12.77$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-10^{\prime \prime}\right)$ due to a chelated hydroxyl group; one set of ABX -type aromatic protons at $\delta_{\mathrm{H}} 7.19\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.38(1 \mathrm{H}$, brd, $\left.J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, and $6.22\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-3^{\prime}\right)$,

Figure 2. The structure and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ of $\mathbf{2}$.
one singlet at $\delta_{\mathrm{H}} 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and nine aliphatic proton signals for a γ, γ-dimethylallyl moiety at $\delta_{\mathrm{H}} 5.20-5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.93$ $(1 \mathrm{H}, \mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.65(1 \mathrm{H}, \mathrm{dd}$, $J=14.5,6.0 \mathrm{~Hz}, \mathrm{H}-9), 1.59(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, and $1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13)$ were similar to those of the flavanonol moiety of sanggenon C [5]; one set of ABX-type aromatic protons at $\delta_{\mathrm{H}} 7.98(1 \mathrm{H}$, d, $\left.J=8.5 \mathrm{~Hz}, \quad \mathrm{H}-14^{\prime \prime}\right), \quad 6.35(1 \mathrm{H}, \quad$ brd, $\left.J=8.5 \mathrm{~Hz}, \mathrm{H}-13^{\prime \prime}\right)$, and $6.14(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}$) were assignable to a $2,4-$ dihydroxybenzoyl moiety; one set of ABXtype aromatic protons at $\delta_{\mathrm{H}} 6.69(1 \mathrm{H}, \mathrm{d}$, $\left.J=8.5 \mathrm{~Hz}, \mathrm{H}-20^{\prime \prime}\right), 5.97(1 \mathrm{H}, \mathrm{dd}, J=8.5$, $\left.2.0 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right)$, and $6.15(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\mathrm{H}-17^{\prime \prime}$) were assignable to a 2,4-dihydroxyphenyl moiety; compared with sanggenon C, the surplus 10 aldyl proton signals at $\delta_{\mathrm{H}} 4.43$ $\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 3.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime \prime}\right)$, $3.20-3.40\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-5^{\prime \prime}\right), 2.28(1 \mathrm{H}$, brd, $\left.J=12.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 1.60-1.70(1 \mathrm{H}$, overlapped, $\left.\mathrm{H}-2^{\prime \prime}\right), 2.00-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right)$, $1.80-1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right)$, and $1.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-7^{\prime \prime}$), together with the MS data, indicated that 3 was an isomer of sanggenon C with the double bond of methylcyclohexene moiety transformed through an intramolecular additive reaction [4,6].

In the ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$, $80^{\circ} \mathrm{C}$) spectrum of 3 , seven aldyl carbon signals at $\delta_{\mathrm{C}} 75.7\left(\mathrm{C}-1^{\prime \prime}\right), 49.4\left(\mathrm{C}-4^{\prime \prime}\right), 45.1$ (C-6"), 40.0 (C-5"), 34.7 (C-2"), 30.0 (C-3"), and $28.0\left(\mathrm{C}-7^{\prime \prime}\right)$, except for the signals of the flavanonol, 2,4-dihydroxybenzoyl and 2,4dihydroxyphenyl moieties, were assigned to a methylcyclohexane moiety. The oxygenated carbon signal at $\delta_{\mathrm{C}-1^{\prime \prime}} 75.7$ indicated the
double bond reacted with a hydroxyl group. According to reference, the etherification of $5-\mathrm{OH}$ of flavonoids resulted in upfield shift of $\delta_{\mathrm{C}-4}$ [7]. $\delta_{\mathrm{C}-4} 180.5$ of $\mathbf{3}$ was less than that of sanggenon $\mathrm{C}\left(\delta_{\mathrm{C}-4} 188.3\right)$ [4], which indicated that the methylcyclohexane moiety connected C-5 through an ether band. The HMBC correlations of $\mathrm{H}-2^{\prime \prime} / \mathrm{C}-6, \mathrm{H}-7^{\prime \prime} / \mathrm{C}-1^{\prime \prime}, 2^{\prime \prime}, 6^{\prime \prime}$ confirmed that the methylcyclohexane moiety connected to flavanonol moiety at $\mathrm{C}-6 / \mathrm{C}-3^{\prime \prime}$, and $\mathrm{C}-1^{\prime \prime}$ connected $\mathrm{C}-5$ through an oxygen atom (Figure 3).

It was reported that the absolute configuration of C-2, 3 of sanggenon-type flavanonols was stable under acid condition [8,9], while a γ, γ-dimethylallyl group can react with its ortho-hydroxyl group through intramolecular addition under this condition [10]. Sanggenon C (4), which was obtained from the titled plant, provided a possible precursor of 3 . Sanggenon C was catalyzed by $\mathrm{F}_{3} \mathrm{CCOOH}$ to give compound 3a (Scheme 1). Compounds $\mathbf{3}$ and 3a had the same R_{t} and R_{f} in HPLC and TLC tests, respectively. Compounds $\mathbf{3}$ and $\mathbf{3 a}$ had the same IR, MS, ${ }^{1} \mathrm{H}$ NMR spectra, and the same Cotton effects in CD spectra, which indicated that they had the same structure. As $5-\mathrm{OH}$ of sanggenon C reacted with the $\mathrm{C}=\mathrm{C}$ bond stereospecifically, the absolute configuration of $\mathbf{3}$ can be deduced as $2 R, 3 S, 1^{\prime \prime} S$, $3^{\prime \prime} S, 4^{\prime \prime} R, 5^{\prime \prime} S$ from those of sanggenon $\mathrm{C}(2 R$, $3 S, 3^{\prime \prime} S, 4^{\prime \prime} R, 5^{\prime \prime} S$) [9]. Thus, the structure of $\mathbf{3}$ was elucidated as shown in Figure 3.

Compound 4 was identified as sanggenon C by the comparison of its physical and spectroscopic data ($[\alpha]_{\mathrm{D}}^{20}$, MS, UV, IR, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR) with those reported $[4,5,8]$.

Figure 3. The structure and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ of $\mathbf{3}$.

Scheme 1. Biomimetic synthesis of 3a from sanggenon C (4).

With respect to the anti-oxidation effects of compounds 1, 2, and Vit E, the inhibitory rates of malondialdehyde (MDA) were 95, 103, and 62.6% at concentrations of $10^{-5} \mathrm{~mol} / \mathrm{l}$, respectively; and were $-14,88$, and 57.3% at concentrations of $10^{-6} \mathrm{~mol} / \mathrm{l}$, respectively. Thus, it indicated that compound $\mathbf{2}$ had good anti-oxidation activity.

3. Experimental

3.1 General experimental procedures

Optical rotations were obtained on a PerkinElmer 241 polarimeter. The IR spectra were recorded on a Nicolet IMPACT-400 spectrophotometer as KBr disks. UV spectra were recorded on a Shimadzu UV-241 spectrophotometer. HR-ESI-MS were obtained on an AccuTOF CS mass spectrometer. NMR spectra were recorded with Varian Mercury300, Varian Mercury-400, and Varian Unity INOVA 500 spectrophotometers. Silica gel for column chromatography and silica gel GF254 for TLC were obtained from Qingdao Marine Chemical Factory, Qingdao, China. Precoated plates of silica gel GF254 and silica gel RP-18 F254s (Merck, Darmstadt, Germany) were used for TLC. The HPLC experiments were carried out on a Shimadzu LC10ATvp chromatograph with a UV detector at 220 nm and the MPLC experiments on a Gilson 302 chromatograph with a UV detector at 254 nm .

3.2 Plant material

M. Cathayana was collected in Lushan, Jiangxi Province, China, in July 2005, and
identified by Prof. Ce-Ming Tan, Jiujiang Institute of Forest Botany, Jiangxi Province, China. A voucher specimen (ID-21037) has been deposited at the Herbarium of Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.

3.3 Extraction and isolation

The air-dried stem bark (9.0 kg) of M. cathayana was finely cut and extracted with refluxing $95 \% \mathrm{EtOH}$. After the solvent was evaporated under vacuum, the residue (700 g) was submitted to chromatography over a silica gel column (60-100 mesh, 1.2 kg) and eluted with petroleum ether ($\mathrm{PE}, 60-90^{\circ} \mathrm{C}$), $\mathrm{CHCl}_{3}, \mathrm{EtOAc}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$, and MeOH , successively.

The EtOAc fraction (200 g) was subjected to a silica gel column (160-200 mesh, $10 \times$ 80 cm) and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixtures (98:2-95:5-90:10-85:15-75:25$70: 30, \mathrm{v} / \mathrm{v}$) to provide 10 fractions. Fraction I (16 g) was subjected to a Sephadex LH-20 column $(2.5 \times 90 \mathrm{~cm})$ and eluted with MeOH to give six fractions. Fraction I-6 $(1.5 \mathrm{~g})$ was purified by silica gel column chromatography (200-300 mesh, $2.5 \times$ 25 cm), eluted with PE -acetone $2: 1$ to give 1 (220 mg) and two fractions. Fraction I-6-2 (70 mg) was further separated by preparative HPLC (Rainin C-18, $20 \times 300 \mathrm{~mm}$, eluted by $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 60: 40\right)$ to give $2(30 \mathrm{mg})$.

Fraction G (23 g) was separated by silica gel column chromatography (160-200 mesh, $6 \times 100 \mathrm{~cm}$), eluted with PE -acetone mixtures (3:1-2:1-1:1, v/v) to give five fractions.

Fraction G-4 (1.3g) was subjected to a Sephadex LH-20 column ($2.5 \times 90 \mathrm{~cm}$, eluted with MeOH) to give seven fractions. Fraction G-4-3 (800 mg) was further separated by MPLC (ODS, $40-60 \mu \mathrm{~m}, 2.5 \times 24 \mathrm{~cm}$, eluted by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 55: 45$) and preparative HPLC (Rainin C-18, $20 \times 300 \mathrm{~mm}$, eluted by $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 60: 40\right)$ to give $3(15 \mathrm{mg})$. Fraction G-1 (5 g) was subjected to a Sephadex LH-20 column $(2.5 \times 90 \mathrm{~cm}$, eluted with $\mathrm{MeOH})$ to give four fractions. Fraction G-1-2 $(1.5 \mathrm{~g})$ was purified by MPLC (ODS, $40-$ $60 \mu \mathrm{~m}, 2.5 \times 24 \mathrm{~cm}$, eluted by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, $60: 40)$ to yield $4(800 \mathrm{mg})$.

3.3.1 Cathayanon C (1)

Yellow amorphous powder; $[\alpha]_{\mathrm{D}}^{20}+11.4$ $(c=0.40, \mathrm{MeOH}) . \mathrm{UV} \lambda_{\text {max }}(\mathrm{MeOH}, \log \varepsilon)$: 208 (4.78), 220 (4.71), 284 (4.34), 310 (4.37), 352 (4.40) nm. IR (KBr) $\nu_{\text {max }}: 3357.9,2922$, 1693, 1603, 1510, 1455, $1409 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 300 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.42(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, ~ \mathrm{H}-6), 6.38(1 \mathrm{H}, \mathrm{dd}, \quad J=8.4$, $2.4 \mathrm{~Hz}, \mathrm{H}-5), 6.43(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3)$, $6.11\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-14^{\prime \prime}\right), 5.91(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8.4, \quad 2.4 \mathrm{~Hz}, \quad \mathrm{H}-13^{\prime \prime}\right), \quad 6.29(1 \mathrm{H}, \mathrm{d}$, $\left.J=2.4 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}\right), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\left.\mathrm{H}-20^{\prime \prime}\right), 6.57\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right)$, $6.54\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-17^{\prime \prime}\right), 7.39(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \mathrm{H}-\alpha), 6.88(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}$, $\mathrm{H}-\beta), 6.80\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 8.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right)$, $7.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime \prime}\right)$, and $2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 100 \mathrm{MHz}$) spectral data, see Table 1. HR-ESI-MS: m/z 561.1548 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{O}_{8}, 561.1549$).

3.3.2 Cathayanon D (2)

Yellow amorphous powder; $[\alpha]_{D}^{20}-5.7$ $(c=0.08, \mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH}): 206$, $284,308,352 \mathrm{~nm}$. IR (KBr) $\nu_{\text {max }}: 3374,1693$, 1611, 1509.6, 1464.6, $1407 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.40(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{H}-6), 6.37(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, \mathrm{H}-5), 6.44(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3)$, $6.22\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-14^{\prime \prime}\right), 5.90(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8.4, \quad 2.4 \mathrm{~Hz}, \quad \mathrm{H}-13^{\prime \prime}\right), \quad 6.27 \quad(1 \mathrm{H}, \quad \mathrm{d}$, $\left.J=2.4 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}\right), 8.43(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$,
$\left.\mathrm{H}-20^{\prime \prime}\right), 6.51\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right)$, $6.53\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-17^{\prime \prime}\right), 7.35(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \mathrm{H}-\alpha), 6.86(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}$, $\mathrm{H}-\beta), 6.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right), 6.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime}\right)$, $8.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right)$, and $2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 100 \mathrm{MHz}$) spectral data, see Table 1. HR-ESI-MS: $m / z 577.1472$ $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{O}_{9}, 577.1500$).

3.3.3 Cathayanon E (3)

Yellow amorphous powder; $[\alpha]_{\mathrm{D}}^{20}+189.1$ $(c=0.10, \mathrm{MeOH})$. UV $\lambda_{\max }(\mathrm{MeOH}, \log \varepsilon)$: 206 (4.73), 282 (4.33), 306 (4.26) nm. IR (FT-IR microscope transmission) $\nu_{\text {max }}: 3345$, 2928, 1697, 1594, 1507, $1451 \mathrm{~cm}^{-1}$. CD $(c=0.052, \mathrm{MeOH}) \Delta \varepsilon(\lambda, \mathrm{nm}):-4.46$ (239), + 6.48 (315). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\left.500 \mathrm{MHz}, 80^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}} 12.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-10^{\prime \prime}\right)$, $7.19\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.38(1 \mathrm{H}$, brd, $\left.J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.22\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-3^{\prime}\right), 5.61$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), $5.20-5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.93$ $(1 \mathrm{H}, \mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.65(1 \mathrm{H}, \mathrm{dd}$, $J=14.5,6.0 \mathrm{~Hz}, \mathrm{H}-9), 1.59(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 1.68$ (3H, s, H-13), 7.98 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-14^{\prime \prime}$), $6.35\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-13^{\prime \prime}\right), 6.14(1 \mathrm{H}$, $\left.\mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}\right), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\left.\mathrm{H}-20^{\prime \prime}\right), 5.97(1 \mathrm{H}, \mathrm{dd}, \quad J=8.5,2.0 \mathrm{~Hz}$, $\left.\mathrm{H}-19^{\prime \prime}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-17^{\prime \prime}\right), 4.43$ $\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 3.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime \prime}\right)$, $3.20-3.40\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-5^{\prime \prime}\right), 2.28(1 \mathrm{H}$, brd, $\left.J=12.0, \mathrm{H}-2^{\prime \prime}\right), 1.60-1.70(1 \mathrm{H}$, overlapped, $\left.\mathrm{H}-2^{\prime \prime}\right), 2.00-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right), 1.80-1.90$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right)$, and $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 100 \mathrm{MHz}$) spectral data, see Table 2. HR-ESI-MS: $m / z 707.2109[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{O}_{12}, 707.2129$).

3.3.4 Synthesis of 3a

Sanggenon C (50 mg) dissolved in anhydrous EtOH 5 ml , catalyzed with $2 \% \mathrm{~F}_{3} \mathrm{CCOOH}$, churned 24 h at $50^{\circ} \mathrm{C}$. The products were isolated by preparative TLC (PE -acetone, $1: 1$, v / v) to yield $\mathbf{3 a}(8 \mathrm{mg})$. Compounds $\mathbf{3}$ and $\mathbf{3 a}$ showed the same $R_{\mathrm{f}}(0.4)$ on TLC (PE-acetone, $1: 1, \mathrm{v} / \mathrm{v})$ and $R_{\mathrm{t}}(10.2 \mathrm{~min})$ on HPLC (Alltima, $\varnothing 4.6 \times 150 \mathrm{~mm}$, eluted by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, 55:45, $1 \mathrm{ml} / \mathrm{min}$). IR (FT-IR microscope transmission) $\nu_{\text {max }}: 3365,2924,1697,1589$,

Table 2. ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{3}$ and 4.

No.	$\mathbf{3}^{\mathrm{a}}$	$\mathbf{4}^{\mathrm{b}}$	No.	$\mathbf{3}^{\mathrm{a}}$	$\mathbf{4}^{\mathrm{b}}$
2	88.8	91.9	$1^{\prime \prime}$	75.7	135.0
3	102.8	102.4	$2^{\prime \prime}$	34.7	122.8
4	180.5	188.3	$3^{\prime \prime}$	30.0	35.8
4 a	100.3	99.9	$4^{\prime \prime}$	49.4	48.2
5	158.6	163.9	$5^{\prime \prime}$	40.0	32.7
6	103.4	109.0	$6^{\prime \prime}$	45.1	33.7
7	162.0	167.7	$7^{\prime \prime}$	28.0	23.7
8	93.7	96.5	$8^{\prime \prime}$	203.8	208.7
8 a	160.8	161.9	$9^{\prime \prime}$	113.2	113.9
9	31.4	32.0	$10^{\prime \prime}$	163.7	165.9
10	117.7	118.5	$11^{\prime \prime}$	102.7	103.7
11	134.3	136.7	$12^{\prime \prime}$	164.2	166.8
12	17.4	25.9	$13^{\prime \prime}$	107.3	107.6
13	25.4	19.1	$14^{\prime \prime}$	131.4	129.0
1^{\prime}	119.8	122.2	$15^{\prime \prime}$	119.8	121.3
2^{\prime}	159.6	161.1	$16^{\prime \prime}$	155.3	156.4
3^{\prime}	97.6	99.4	$17^{\prime \prime}$	102.2	103.5
4^{\prime}	159.4	161.1	$18^{\prime \prime}$	155.7	157.7
5^{\prime}	108.0	109.7	$19^{\prime \prime}$	105.7	108.7
6^{\prime}	124.2	125.6	$20^{\prime \prime}$	128.0	134.7

${ }^{\mathrm{a}}$ DMSO- $d_{6}, 125 \mathrm{MHz}, t=80^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Acetone $-d_{6}, 100 \mathrm{MHz}, t=24^{\circ} \mathrm{C}$.
$1505,1450 \mathrm{~cm}^{-1}$. $\mathrm{CD}(c=0.161, \mathrm{MeOH}) \Delta \varepsilon$ $(\lambda, \mathrm{nm}):-6.08$ (239),+8.98 (315). ${ }^{1} \mathrm{H}$ NMR of 3a (DMSO- $d_{6}, 300 \mathrm{MHz}, 70^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 12.64$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-10^{\prime \prime}\right), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, H-6'), $6.37\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.21$ $\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, $5.20-5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.93(1 \mathrm{H}$, dd, $J=14.4, \quad 7.8 \mathrm{~Hz}, \quad \mathrm{H}-9), \quad 2.64(1 \mathrm{H}, \mathrm{dd}$, $J=14.4,5.7 \mathrm{~Hz}, \mathrm{H}-9), 1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, 1.68 (3H, s, H-13), 7.97 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\left.\mathrm{H}-14^{\prime \prime}\right), 6.34\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, \mathrm{H}-13^{\prime \prime}\right)$, $6.13\left(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-11^{\prime \prime}\right), 6.69(1 \mathrm{H}, \mathrm{d}$, $\left.J=8.4 \mathrm{~Hz}, \mathrm{H}-20^{\prime \prime}\right), 5.97(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $\left.2.4 \mathrm{~Hz}, \mathrm{H}-19^{\prime \prime}\right), 6.14(1 \mathrm{H}, \mathrm{d}, ~ J=2.4 \mathrm{~Hz}$, $\left.\mathrm{H}-17^{\prime \prime}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 3.47$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime \prime}$), $3.20-3.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}\right), 2.28$ ($1 \mathrm{H}, \mathrm{dd}, J=12.3,2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), $1.60-1.70$ (1 H , overlapped, $\mathrm{H}-2^{\prime \prime}$), 2.05-2.14 $(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-6^{\prime \prime}\right), 1.75-1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right)$, and $1.37(3 \mathrm{H}$, s, H-7"). ESI-MS: $m / z 707.3[\mathrm{M}-\mathrm{H}]^{-}$.

3.4 Anti-oxidation bioassays

The anti-oxidation activities of $\mathbf{1}, \mathbf{2}$, and Vit E were determined by the content of MDA, a compound that is produced during microsomal
lipid peroxidation induced by ferrous cysteine. MDA was detected by using the thiobarbituric acid (TBA) method. Briefly, $1 \mathrm{mg} / \mathrm{ml}$ microsomal protein, different concentrations of test compound or vehicle and 0.2 mM cysteine in 0.1 M PBS were incubated for 15 min at $37^{\circ} \mathrm{C}$, 0.5 mM ferrous ion was added, mixed, and the whole incubated for 15 min at $37^{\circ} \mathrm{C}$ again. An equal volume of 20% TCA was added to determine the reaction and the mixture was centrifuged for 10 min at 3000 rpm . The supernatants were reacted with 0.67% TBA for 10 min at $100^{\circ} \mathrm{C}$. After cooling, the MDA was quantified by determining the absorbance at 532 nm , and then the inhibition rate was calculated.

Acknowledgements

This research program was supported by the National Natural Science Foundation of China (Nos 20432030 and 20572133). We thank the Departments of Instrumental Analysis and Pharmacology (Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College) for the measurements of IR, UV, NMR, ESI, and HR-ESI-MS spectra, and performing the anti-oxidation bioassay, respectively.

References

[1] Z.G. Li and M.R. Jia, J. Chin. Med. Mat. 14, 23 (1991).
[2] Y. Hano, Y. Miyagawa, M. Yano, and T. Nomura, Heterocycles 28, 745 (1989).
[3] Y. Hano and T. Nomura, Heterocycles 24, 1381 (1986).
[4] R.C. Shen and M. Lin, Phytochemistry 57, 1231 (2001).
[5] T. Nomura, T. Fukai, Y. Hano, and J. Uzawa, Heterocycles 16, 2141 (1981).
[6] B.M. Abegaz, B.T. Ngadjui, E. Dongo, B. Ngameni, M.N. Nindi, and M. Bezabih, Phytochemistry 59, 877 (2002).
[7] K.R. Markham, B. Ternai, R. Stainley, H. Geiger, and T.J. Mabry, Tetrahedron 34, 1389 (1978).
[8] Y.Q. Shi, T. Fukai, M. Ochiai, and T. Momura, Heterocycles 55, 13 (2001).
[9] Y.Q. Shi, T. Fukai, and T. Momura, Heterocycles 54, 639 (2001).
[10] M. Arisawa, A. Fujita, T. Hayashi, K. Hayashi, H. Ochiai, and N. Morita, Chem. Pharm. Bull. 38, 1624 (1990).

[^0]: *Corresponding author. Email: dqyu@imm.ac.cn

